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ABSTRACT
In a heterogeneous team, agents have different capabilities
with regards to the actions relevant to the task. Roles are
typically assigned to individual agents in such a team, where
each role is responsible for a certain aspect of the joint team
goal. In this paper, we focus on role assignment in a het-
erogeneous team, where an agent’s capability depends on
its teammate and their mutual state, i.e., the agent’s state
and its teammate’s state. The capabilities of an agent are
represented by a mean and variance, to capture the uncer-
tainty in the agent’s actions as well as the uncertainty in the
world. We present a formal framework for representing this
problem, and illustrate our framework using a robot soccer
example. We formally describe how to compute the value
of a role assignment policy, as well as the computation of
the optimal role assignment policy, using a notion of risk.
Further, we show that finding the optimal role assignment
can be difficult, and describe approximation algorithms that
can be used to solve this problem. We provide an analysis
of these algorithms in our model and empirically show that
they perform well in general problems of this domain, com-
pared to market-based techniques.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Capability, Role Assignment, Heterogeneous Teams, Multi-
Agent

1. INTRODUCTION
Role assignment in heterogeneous teams, i.e., teams with
members of different capabilities, has been an extensive topic
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of research. Different capabilities among the team make
certain team members better suited for specific roles, and
role assignment algorithms plan based on these capabili-
ties. Common approaches to this problem, which we further
discuss in the related work section, include market-based
techniques, where agents bid over the roles, and the capa-
bilities and states of the agents are used in generating the
bids. Most current approaches that explicitly model capa-
bilities assume that the agents have fixed capabilities for
tasks, which may not be an accurate reflection in dynamic
environments, since the state of the world affects an agent’s
ability to perform an action.

We are interested in explicitly modelling the capabilities of
the agents in dynamic environments, where state is an im-
portant factor that agents should be aware of. We address
the case where an agent’s ability in performing an action de-
pends on the teammate that is affected by the action, as well
as their mutual state, i.e., the agent’s state and its team-
mate’s state. Modelling capabilities in this way captures
information about both the innate abilities of the agent in
performing the action, as well as how effective a particular
pairing of agents would be when the action is taken in their
mutual states. For example, an agent may perform an ac-
tion well with a particular teammate in some mutual states,
but not in other mutual states, or with any other agent. Al-
ternatively, any two agents may work well together at one
particular mutual state. We contribute a model that cap-
tures these situations.

We are also interested in a pick-up team scenario, where
agents who have had no prior contact are put together to
form a team, and must learn to coordinate well. The agents
do not have prior knowledge of the capabilities of their team-
mates, nor how well they work together. Thus, we as-
sume that information about capabilities is incrementally
obtained through interaction and observation, which implies
that agents are aware of their actions and learn about the
actions’ effects. In this paper, we formally model the capa-
bilities of the agents, and do not discuss the techniques used
to learn the capabilities from observations.

Since the capabilities of agents are incrementally obtained,
we define the capability of an agent performing an action
(with a particular teammate in a mutual state) as the mean
and variance of the utility achieved by the action. Repre-
senting a capability with a mean and variance captures both



the uncertainty in the agent’s action and the uncertainty in
the world. In addition, we introduce the concept of risk in
role assignments, by evaluating the mean and variance of
role assignment policies. Having a parameter for risk allows
a tradeoff between the mean and variance in the optimal role
assignment policy, so conservative role assignment policies
are chosen over riskier ones, i.e., policies with higher mean
utilities but correspondingly higher variances, if so desired.
For example, by varying the amount of risk over time, a
pick-up team of robots can quickly learn to work together
and discover the best role-assignment of the entire team.

We contribute the Mutual State Capability-Based Role As-
signment (MuSCRA) model, which includes the states of the
world, the actions that can be taken, the roles in the team,
and the capabilities of the agents. Roles have association
strengths with states of the world, i.e., the states that are
important to the role, and different roles have different em-
phasis on actions, i.e., which actions are important to the
role. We introduce the concept of an optimal role assign-
ment in our model, and discuss approximation algorithms
that can be used to find effective role assignments. We com-
pare the performance of the approximation algorithms with
a market-based approach.

There are several real scenarios in dynamic environments
where MuSCRA can be applied. In robot soccer, robots
may have different capabilities in kicking the ball accurately
and passing the ball to one another. Role assignment in this
case would involve choosing the “best” players for the team
(if there were more robots than actual players allowed on
the field), and giving them the right assignments such as
attacker or defender. The risk parameter would determine
whether an aggressive role assignment is preferred over a
conservative one. Similarly, in urban search and rescue, dif-
ferent robots have different capabilities, for example the abil-
ity to cross rough terrain, the speed of movement, and the
ability to detect trapped humans. Furthermore, such abili-
ties could depend on the composition and state of a team,
e.g., a robot’s ability to detect a human accurately could de-
pend on the sensor readings of another robot. Roles could
be diggers that clear the path for other robots, and searchers
that travel along the cleared path to search for humans.

The rest of the paper is structured as follows: in Section 2,
we discuss related work. In Section 3, we formalize the
MuSCRA model. We use robot soccer as a detailed ex-
ample for our model, and instantiate the model for other
application domains. In Section 4, we describe how to solve
the MuSCRA model for an optimal role assignment, and
discuss approximation algorithms that can be used to find
effective role assignments. We discuss our experiments and
results in Section 5, and we conclude with a discussion of
MuSCRA and its contributions in Section 6.

2. RELATED WORK
Task allocation in multi-agent systems is very similar to role
assignment, where the tasks in the domain can be likened to
the actions in our approach, and roles represent responsibil-
ities over certains groups of tasks. Gerkey and Mataric pro-
vide a detailed taxonomy of task allocation in multi-robot
systems [5]. The authors also use the concept of utility,
which they posit “is carried out somewhere in every au-

tonomous task allocation system”. Our approach uses util-
ity, but instead of a single value, we use a mean and variance
to represent the utility’s distribution instead.

Market-based approaches are frequently used in task alloca-
tion domains, and Dias et al. provide a comprehensive sur-
vey [2]. In addition, market-based approaches allow agents
to perform role assignment [3]. While market-based ap-
proaches typically can determine a role assignment in O(n)
time or better (where n is the number of agents), the com-
plexity of the domain is delegated to the method of gener-
ating the bid. Instead of encapsulating this complexity and
embedding the capabilities, our approach explicitly models
capabilities, and allows the utility of actions to be learnt
over time through observation.

Besides market-based approaches, formal models such as
Multi-Agent Markov Decision Processes have recently been
used to solve the multi-agent role assignment problem [11].
However, they do not explicitly model the capabilities of
individual agents. He and Ioerger provide a model of capa-
bilities in multi-agent systems [8], but they do not model the
capabilities of agents as a function of the team composition.
In our approach, agents are able to update their capabil-
ities as they acquire new observations. These capabilities
are dependent on the configuration of the world, as well as
the agents occupying the roles of the team, and their mutual
states.

Guttmann models uncertainty in the capabilities of teams in
performing tasks, using means and standard deviations [7].
We model capabilities probabilistically as a function of the
agent, a teammate, and their mutual state. Kok and Vlas-
sis use states to model teammates to coordinate actions [9];
Gmytrasiewicz and Doshi model agents to select optimal
actions [6]; Garland and Alterman study conventions to co-
ordinate actions [4]. We model capabilities to select a role
assignment to form a team with a high utility, calculating
the performance of the role assignment by using the statis-
tics of the capabilities.

Role assignment can be used in a variety of domains, such as
robot soccer [13], formation control [1], and assembly [12].
McMillen and Veloso use the concept of Skills, Tactics, and
Plays, where a play determines the available roles for the
robots on the team [10], while Vail and Veloso use potential
fields to determine the role assignment of the robots [14].
However, in both cases, the robots are assumed to be ho-
mogeneous and equally capable of performing all tasks. Our
approach instead focuses on the case when robots are het-
erogeneous and have differing capabilities.

3. MODELLING AGENT CAPABILITIES
A heterogeneous team of agents consists of agents with dif-
ferent capabilities, and the goal is to find an assignment of
roles for the agents such that the best team configuration is
achieved, in terms of the utility attained. The capability of
an agent to successfully perform an action with a teammate
depends on their mutual state, i.e., the agent’s state as well
as the teammate’s. These capabilities are assumed to be ob-
tained incrementally from observation, and are represented
by the mean and variance of the utility of performing the
action. Role assignment of a team of robots incorporates a



α1

α2

β2
β1

Gα Gβ

Figure 1: Robot soccer scenario with 2 teams (α and
β), showing the defensive and offensive regions, and
goals.

risk factor, which represents the tradeoff between the mean
and variance of the utility of a role assignment policy.

3.1 The MuSCRA Model
Definition 1. A Mutual State Capability-Based Role

Assignment (MuSCRA) is a tuple {X ,A,a,R, S,E,C, ρ}

• X is the set of states

• A is the set of actions

• a is the set of agents

• R is the set of roles

• S : R × X → R is the association between roles and
states

• E : R×A → R is the emphasis of actions in roles

• C : a × X × A × a × X → (µC, σ
2
C) is the function of

capabilities, where

C(a1, x1, A, a2, x2)

returns the mean and variance of the utility obtained
when agent a1 in state x1 performs action A while
agent a2 is in state x2

• ρ ∈ (0, 1) is the amount of risk to take in assigning
roles

To aid in the explanation of the MuSCRA model, we use a
single scenario extensively. Consider a robot soccer scenario
where a team of 2 robots plays against another team of 2
robots. The goal of each team is to score as many points
into the opponent’s goal as possible, while minimizing the
number of points scored against themselves. Fig. 1 shows the
field and the positions of the 2 teams α and β. The teams
α and β score into goals Gβ and Gα respectively. Although
the examples involve 2 agents in a robot soccer scenario,
the MuSCRA model is applicable to scenarios with many
agents, and in other domains, which we discuss later.

States
The set of states X is the set of all possible states of the
agents. X is not the joint state-space of the team — each
x ∈ X represents a state that a single agent can be in.

In robot soccer, the state of each robot has 2 features: its
physical position on the field (defensive/offensive half), and
whether it is blocked by an opponent. However, for ease

Dribble Pass Score

Figure 2: Actions of soccer robots. Large circles
indicate the robots, and small black circles indicate
the ball. The thick bold line represents the goal
area. Solid and dotted arrows indicate the path of
the ball and robot respectively.

of explanation, we only use the first feature; we will elabo-
rate on the 4-states case (using both features) later in this
section. We thus define the set of states:

X = {xd, xo}

where the xd means that the robot is in the defensive half,
and xo means that the robot is in offensive half. In Fig. 1,
robot α1 is in state xd and robot α2 is in state xo.

Actions
The set of actions A represents actions that the agents can
take. Similar to X , A is not the joint action-space of the
team, but instead individual actions that each agent can
take. These actions may take a teammate as a parameter,
if the action involves a teammate.

In the robot soccer scenario, each robot can perform 3 ac-
tions, with varying capabilities. These actions (and their
corresponding symbols) are: dribble (Ad), pass (Ap), and
score (As). Thus, the set of actions is:

A = {Ad, Ap, As}

Dribbling involves the robot moving the ball as along the
field (typically around an opponent), while passing involves
kicking a ball to a teammate. Scoring involves shooting the
ball directly at the opponent’s goal. Fig. 2 shows an exam-
ple of these actions in the field. The solid arrows indicate
the direction of travel of the ball, while the dotted arrows
represent the path of the robot.

In most situations, the utility obtained by an agent perform-
ing an action is affected by its current state, as well as its
teammate and its teammate’s state. For example, it is more
likely for a robot in an open position to successfully pass
to a teammate who is also in an open position, while it is
more unlikely to succeed if either or both of the robots are
blocked. Also, a particular robot may be better at receiving
passes than other robots in the team.

Agents
The set of agents, a, represent the team of cooperative agents
whose roles are being assigned. Only the team of agents are
considered — adversarial agents (or agents that cannot be
controlled) are not part of this set.



Thus, for the robot soccer example, we only control the team
of shaded robots, and the team of agents is defined as:

a = {α1, α2}

Roles
The roles of the team, R, represent associations with certain
states of the world, as well as an emphasis in certain actions.
Each role is assigned to a single agent, and so roles can be
viewed as the smallest element of a team. In particular,
the number of roles should be no larger than the number of
agents, i.e., |R| ≤ |a|, which ensures that every role can be
fulfilled by an agent.

In robot soccer, we can define the set of roles as:

R = {Rd, Ra}

where Rd is a defender and Ra is an attacker.

The defender’s responsibility is primarily to prevent a goal
from being scored against the team, and secondarily to pass
the ball upfield to the attacker. The attacker’s responsibility
is to score goals for the team.

Association between Roles and States
Roles are associated with states of the world, and this is
represented by the function S : R × X → R, which
indicates how strongly associated a state and role are, where
a higher value indicates a stronger association. S is such
that:

∀R ∈ R, x ∈ X , 0 ≤ S(R, x) ≤ 1 (1)

∀R ∈ R,
∑
x∈X

S(R, x) = 1 (2)

Eqn. 1 states that all associations of roles and states are be-
tween 0 and 1. Eqn. 2 states that the sum of all associations
of any given role is 1, which provides normalization so that
the weighting of every role is equal. A state x that is unas-
sociated with any role, i.e., ∀ R ∈ R, S(R, x) = 0, means
that the state is unimportant to all roles in the team.

Table 1 displays the values of the function S in the robot
soccer example. The state xd (i.e., the robot is physically in
the defensive half) is associated with the defender role Rd,
and the state xo (i.e., the robot is physically in the offensive
half) is associated with the attacker role.

S(R, x) xd xo
Rd 1 0
Ra 0 1

Table 1: Regions defined in robot soccer

Emphasis of Actions in Roles
Different roles may emphasize different actions, to indiciate
how important the action is to a role. This emphasis is given
by the function E : R×A → R, such that:

∀R ∈ R, A ∈ A, 0 ≤ E(R,A) ≤ 1 (3)

∀R ∈ R,
∑
A∈A

E(R,A) = 1 (4)

Eqn. 3 states that all emphases of actions in roles are be-
tween 0 and 1 (inclusive), and Eqn. 4 states that the sum of
emphases for any role is 1, which ensures normalization.

In our robot soccer example, the function E is shown in
Table 2. The defender role Rd places a high emphasis on
the dribbling action Ad and the passing action Ap, with a
little emphasis on the scoring action As. This reflects the
defender’s role in preventing a goal from being scored and
pushing the ball upfield. The small emphasis on scoring
reflects that the defender may take a direct shot on goal if an
opportunity arises. The attacker role Ra places a very high
emphasis on scoring (which reflects its main responsibility),
and dribbling (which it uses to go around opponents). There
is no emphasis on passing, since there is no other player
upfield worth passing the ball to.

E(R, a) Ad (Dribble) Ap (Pass) As (Score)
Rd 0.5 0.4 0.1
Ra 0.3 0 0.7

Table 2: Emphasis of actions in roles in robot soccer

Mutual State Capabilities
In a heterogeneous team, agents have different capabilities
in the actions and skills relevant to the task. The capability
function, C : a × X × A × a × X → (µC, σ

2
C),

represents these capabilities of the agents.

The first two parameters of C represent the agent and its
state. The third parameter, A, represents the action being
performed, and the last two parameters represent the team-
mate and the teammate’s state. Such a parametrization of
capabilities takes into account that an agent’s ability to per-
form an action and achieve the desired outcome depends on
the teammate, and their mutual state, i.e., the agent’s state
and the teammate’s state. If an action does not depend on
a teammate, e.g., the scoring action As in the robot soccer
example, then the values returned by C is equal for all values
of teammates and teammate states.

C returns a mean and variance, which represent the dis-
tribution of the utility obtained by performing the action.
The variance in the utility is affected by the uncertainty in
performing the action (how likely the robot is able to carry
out the action) as well as the uncertainty in the world (how
likely the desired outcome of the action is obtained).

In addition, the means and variances returned by C are
intended to be obtained through a data-driven approach,
e.g., learning or modelling. Thus, by including a variance
term, the model captures an idea of how much data has been
collected and how consistent a robot is in its actions. For
example, if only the mean was captured, then the value of a
robot that is consistently observed to be average would be
equal to that of another robot that has only been observed
twice, once really well and once really poorly.

We henceforth adopt the notation Cµ to represent the func-
tion derived from C that returns only the mean (µC), and



Cσ2 to represent the function derived from C that returns
only the variance (σ2

C).

Table 3 shows the different capabilities of the 2 robots in
the robot soccer example. Robot α2 is slightly better (in
terms of the mean) than α1 in passing and scoring (Ap and
As respectively), as shown in italic for α1 and bold for α2

in Table 3. However, the variance of α2’s utility in these
actions are also higher than that of α1. Depending on the
amount of risk taken (ρ) in the role-assignment, the role
assignments of α1 and α2 may change, as described later.

Risk
The ρ term in the MuSCRA model represents how much risk
to take while assigning roles to the team. The utility Ur of
a role assignment is normally distributed with a mean and
variance, and given a certain value of ρ ∈ (0, 1), u is a value
such that Ur ≤ u, i.e.,

P (Ur ≤ u) = ρ (5)

Thus, as ρ increases, the probability that the role assignment
value takes on a lower value than u increases, and so ρ is a
measure of risk taken in the role assignment. Further details
on using ρ in calculate the value of a policy is shown later.

3.2 Applications of the MuSCRA Model
The robot soccer scenario described in detail earlier in this
section is a good application of the MuSCRA model. As
mentioned before, the states of each robot have two main
features, its position on the field, and whether the robot
is blocked by an opponent robot. The states of the robots
would then be {(defensive, clear), (defensive, blocked), (of-
fensive, clear), (offensive, blocked)}. Such a formulation al-
lows the encapsulation of information about the world be-
yond positional information. For example, the capability of
a robot passing a ball to a teammate, when both of them are
blocked by opponents, would take into account the robots’
abilities to manoeuvre around the opponents, as well as the
opponent’s abilities to get in the way. Thus, even though the
opponent robots are not explicitly modelled, their strengths
and weaknesses affect the values in the team’s capabilities.

Table 4 lists a number of domains that the MuSCRA model
can be applied to. Besides robot soccer, the MuSCRA model
works well in other domains that involve role assignment to
heterogeneous teams, e.g., urban search and rescue (USAR).
The success of agents’ actions in USAR depends on their
teammates and their mutual states, e.g., the ability for a
robot to move through a blocked area depends on which
teammate is carrying rubble to help clear the path. Roles
can be split into searchers, whose main job is to search for
humans, and diggers, who clear rubble from the area and
allow the searchers to travel quickly.

The MuSCRA model can also be applied to task alloca-
tion domains, such as in preparing a presentation. Actions
include analyzing data for the presentation, creating slides,
and actually making the presentation. These actions depend
on teammates and mutual states as well. For example, an
agent’s capability in drawing graphics depends on whether it
has data available and which teammate planned the layout
of the slides.

4. ROLE-ASSIGNMENT IN MUSCRA
In order to find the optimal assignment of roles in the MuSCRA
model, we define a role assignment policy:

Definition 2. A role assignment policy π : R→ a is an
assignment of roles to agents such that every agent has at
most 1 role, i.e., π(R) = π(R′)⇒ R = R′.

Def. 2 states that role assignments are unique; no agent
has more than 1 role. When there are more agents than
there are roles, it is possible for some agents to have no role.
Role assignment policies are similar to the single-task robots,
single-robot tasks, instantaneous assignment (ST-SR-IA) in
Gerkey and Mataric’s task allocation taxonomy [5].

4.1 Finding the Optimal Policy
Given a role assignment policy π, we determine the utility of
the team thus assigned, taking into account the capabilities
of each agent and its assigned role. We define the utility of
a role assignment policy:

Definition 3. The utility of a role assignment policy is
determined via the function:

U : π → (µπ, σ
2
π)

where µπ and σ2
π represent the mean and variance of the

policy’s utility.

We denote Uµ as the function derived from U that returns
the mean, and Uσ2 as the function derived from U that
returns the variance. The functions are computed as follows:

Uµ(π) =
∑
R∈R
x∈X
A∈A

R′∈R:R 6=R′

y∈X

φ(·)Cµ(π(R), x, A, π(R′), y)

Uσ2(π) =
∑
R∈R
x∈X
A∈A

R′∈R:R 6=R′

y∈X

φ(·)Cσ2(π(R), x, A, π(R′), y)

where φ is a weight function:

φ(R, x,A,R′, y) = E(R,A)S(R, x)S(R′, y)

Using the action emphasis function E and role-state asso-
ciation function S, φ determines how much weight to place
on the utility of an action taken by a role. Thus, actions
with more emphasis in the role will reflect a higher weight
in φ. Similarly, highly associated states of the agent and its
teammate will have higher weights during U ’s calculation.

It may seem that the calculation of a policy’s utility involves
a massive amount of computation. However, the states in
which the roles are valid (i.e., S(R, x) > 0 or S(R′, y) > 0)
are typically much smaller than the entire state space. Thus,



Agent Agent’s State Action Teammate Teammate’s State Mean (µC) Variance (σ2
C)

α1 xd Ad α2 xo 2 1
α1 xd Ap α2 xo 8 2
α1 xd As α2 xo 3 1

α1 xo Ad α2 xd 5 2
α1 xo Ap α2 xd -3 2
α1 xo As α2 xd 10 3

α2 xd Ad α1 xo 2 1
α2 xd Ap α1 xo 9 3
α2 xd As α1 xo 4 3

α2 xo Ad α1 xd 5 2
α2 xo Ap α1 xd -2 3
α2 xo As α1 xd 12 7

Table 3: Capabilities in robot soccer example

Domain State Features Actions Roles

Robot Soccer
Position on field Dribble Defender

Clear / Blocked by opponent Pass Attacker
Score

Urban Search & Rescue

Near human Detect humans Searcher
Blocked / Open area Dig through rubble Digger

Carrying rubble Carry rubble
Move

Assembly

Holding object Lift object Coarse Manipulator
Near object Rotate object Fine Manipulator

Object in sight Drill
Bolt

Presentation

Data available Analyze data Slide creator
Graphics created Draw graphics Graphic Designer
Layout planned Create slides Presenter

Make presentation

Table 4: Examples of the MuSCRA model in different domains

the computation of U can be optimized. Furthermore, cal-
culation of a policy’s mean utility and variance is only a
constant factor increase as compared to calculation of the
policy’s mean utility alone.

In the robot soccer example, 2 possible role assignment poli-
cies exist. The policy π1 = (Rd → α1, Ra → α2) has
a mean utility of 14.4 with variance 6.9, while the policy
π2 = (Rd → α2, Ra → α1) has a mean utility of 13.5 with
variance 4.7.

Incorporating Risk into Utility
The utility of a policy π is normally distributed with a
mean and variance, as computed by Uµ and Uσ2 respec-
tively. Given the risk parameter ρ, we define the value of a
policy as follows:

Definition 4. The value of a policy is given by the func-
tion V : π → R, where:

V (π) = Uµ(π) +
√
Uσ2(π)Φ−1(ρ)

where Φ−1 is the inverse of the standard normal cumulative
distribution function.

Thus, ρ is the probability that the value of a role assignment
policy π is lower than V (π), and so ρ represents the risk
taken in the role assignment policy.

Optimal Role-Assignment Policy
With a value function V as defined above, we define the
optimal (or best) policy:

Definition 5. The optimal policy π∗ is the policy with
the highest value:

∀π, V (π∗) ≥ V (π)

The optimal policy π∗ has the highest value among all pos-
sible policies. Thus, we can find π∗ with the following:

π∗ = argmax
π

V (π)

Referring back to robot soccer, when ρ = 0.2, the policies
π1 and π2 have values 8.6 and 9.5 respectively, so π2 is the
optimal policy. However, when ρ = 0.8, the values of π1

and π2 are 20.2 and 17.4 respectively, and π1 becomes the
optimal policy. Thus, varying the value of ρ can result in
different optimal policies, e.g., π2, the policy with a lower



mean and variance, has a higher value than π1 when ρ is
low, i.e., a conservative policy is preferred.

4.2 Approximation Algorithms
Finding the optimal policy π∗ using a brute-force method
involves searching the entire space of policies, which is facto-
rially large. As such, we consider approximation algorithms
such as hill-climbing.

Hill-Climbing
To perform hill-climbing or other approximation techniques,
we define neighbors of policies:

Definition 6. Role assignment policies π1 and π2 are
neighbors if:

• π1 and π2 have a swapped value, i.e., ∃xi, xj s.t.
(π1(xi) = π2(xj)) ∧ (π1(xj) = π2(xi)) ∧
(xi 6= xj) ∧ (∀x 6= xi, x 6= xj , π1(x) = π2(x))

OR

• π1 and π2 differ by one value, i.e., ∃x s.t.
(π1(x) 6= π2(x)) ∧ (∀x′ 6= x, π1(x′) = π2(x′))

Hill-climbing is performed by selecting an initial policy π
and evaluating its neighbors and choosing the best neighbor
to iterate on. It continues until all neighbors of the policy
have equal or lower value.

Hill-Climbing with Random Restarts
The performance of the hill-climbing algorithm is dependent
on the initial starting policy. In order to circumvent this
issue, we can perform hill-climbing with random restarts.
The algorithm calls the hill-climbing function repeatedly,
starting with random initial policies, and returns the best
policy from all the hill climbs.

5. EXPERIMENTS AND RESULTS
In order to test our model and solving algorithms, we first
generated a robot soccer scenario, with different types of
agents, and used the approximate algorithms as a proof-of-
concept of our model. Next, we generated random instances
of the MuSCRA model to experiment on, and evaluated the
performance of the approximate algorithms versus a market-
based bidding technique. While the capability function is in-
tended to be created via a data-driven (or learning) method,
the focus of this paper is on the MuSCRA model and not
the learning technique, and as such, we generated the ca-
pabilities based on normal distributions, as described below
for each domain.

5.1 Robot Soccer Domain
To simulate robot soccer, we defined 3 states in the world: a
defensive zone, mid-field, and an offensive zone. We defined
4 possible actions: passing, clearing, dribbling and scoring.
Next, we created 3 types of roles for the agents: defenders,
mid-fielders, and attackers. Given the number of agents n
as input, we created bn/3c copies of the mid-fielder role,

bn−bn/3c
2
c defender roles, and the rest as attacker roles. As

such, there were n roles to be assigned to n agents.

Table 5 shows the role-state associations for the defender,
mid-fielder, and attacker roles, and Table 6 shows the em-
phasis of actions for the roles. There were multiple copies
of each role type (defender, mid-fielder, attacker), and they
each took on the relevant values shown in Tables 5 and 6.

Defensive Mid-Field Offensive
Defenders 0.8 0.2 0

Mid-Fielders 0.2 0.6 0.2
Attackers 0 0.2 0.8

Table 5: Role-State associations for robot soccers

Pass Clear Dribble Score
Defenders 0.2 0.5 0.3 0

Mid-Fielders 0.4 0.2 0.3 0.1
Attackers 0.2 0 0.2 0.6

Table 6: Essential actions in roles for robot soccer

We generated the capabilities of the n agents by doing the
following: given the number of defender, mid-fielder and at-
tacker roles, we first pre-assigned each agent to a role. Next,
we generated capabilities such that agents pre-assigned as
defenders had higher mean utilities for the clearing action,
mid-fielders had higher mean utilities for passing, and at-
tackers had higher mean utilities for scoring.

The goal of this setup was to confirm that the approximation
algorithms would be able to find the“right”role assignments,
given the capabilities that we generated. We ran the hill-
climbing algorithms, varying the number of robots from 3 to
7. In all cases, we found the optimal role assignment policy,
which matched the pre-assigned roles of the agents.

5.2 Random Domains
We created a simulator in Java that, given as input the num-
ber of states |X |, the number of actions |A|, the number of
agents |a| and the number of roles |R|, generates the func-
tions S,E, and C randomly, as described below.

To generate the associations S between roles and states, we
did the following: for each role and state, we generated a
random number uniformly distributed between 0 and 1. We
then normalized the values for each role, so that the sum of
its associations was 1, i.e., ∀ R ∈ R,

∑
x ∈ X S(R, x) = 1.

We created the emphasis function E similarly, by generating
a random number uniformly distributed between 0 and 1 for
each role-action pair. We then normalized these values as
well to ensure that ∀R ∈ R,

∑
A∈A E(R,A) = 1.

Lastly, we created the capabilities of robots by generating a
mean between -1 and 1 (using a standard Normal distribu-
tion, with tail ends removed), and a variance between 0 and
1, taking the absolute value of a standard Normal distribu-
tion, with tail ends removed.



5.3 Evaluating the Algorithms
To compare the approximate algorithms against a market-
based approach, a bidding technique had to be devised. The
agents would bid for each role sequentially, and the agent
with the highest bid is assigned the role. To generate the
bid, each agent a calculated its individual capability for a
role R, as shown below:

c(a,R) =
∑
A∈A
x∈X

E(R,A)S(R, x)

∑
a′∈A
x′∈X

C(a, x,A, a′, x′)∑
a′∈A
x′∈X

1

Using the mean and variance of its individual capability,
each agent would then form the bid by incorporating the
risk factor ρ. Essentially, each robot calculated its capability
based on the average of its teammates and their states, since
at the time of bidding, the agents do not have any knowledge
about what roles their teammates will take.

We then implemented the hill-climbing and hill-climbing
with random restarts algorithms and compared them with
the bidding technique. To create a random policy, we chose
a policy at random from the entire space of policies.

In the experiments for the random domains, we varied n to
be between 5 and 7, and set |X | = |A| = |a| = |R| = n.
We generated 300 MuSCRA models and ran the algorithms.
We fixed the risk factor ρ to be 0.5 for all the experiments.
The number of random restarts was set to be 5% of the
number of possible policies. We limited the value of n to 7
since a brute-force search of large policy spaces (to obtain
the optimal policy) would take extremely long to compute
when n > 7.

We defined the effectiveness of the algorithm, by comparing
the policy found π against the optimal policy π∗ and the
worst policy πmin, i.e., the policy with the minimum value:

effectiveness =
V (π)− V (πmin)

V (π∗)− V (πmin)

Table 7 displays the value of the best policy found by the
algorithms, as a percentage compared with the brute-force
method (which evaluates all policies). Hill-climbing and ran-
dom restarted performed very well, compared to the market-
based technique, without exploring much of the policy space
(2.0% and 8.9% respectively when n = 7).

Effectiveness of policy n
in random domains 5 6 7

Hill-climbing 98.1% 97.5% 97.2%
Random restarts 98.3% 100% 100%

Market-based 68.1% 69.6% 70.2%

Table 7: Effectiveness of policies found

To ensure that the risk factor ρ did not have an effect on the
algorithms, we repeated the experiments on hill-climbing de-
scribed above, fixing the value of n to 5, and varying ρ from
0 to 1, and running 1000 trials each. We found that the per-
formance of the algorithms were not affected by the value
of ρ, because the algorithms are blind to the value func-
tion, and the definition of neighbors in policy space allowed

an effective exploration of the space. However, for a given
random domain, different values of ρ will result in different
optimal policies found.

6. CONCLUSION
We formally defined the Mutual State Capability-Based Role
Assignment (MuSCRA) model, and described each of its
components in detail, using robot soccer as an example of
an instantiation of the model. We briefly described other
domains where MuSCRA can be applied, giving examples
of possible states, actions and roles in those domains. Ca-
pabilities of agents in MuSCRA are defined not only as a
pairing between an agent and action, but also incorporates
the teammate, and their mutual state, i.e., the state of the
agent and its teammate. This allows a generalization of ca-
pabilities to include the fact that the success of an action in
a team depends on the composition of the team, as well as
the state of the world. Information about the world can be
embedded as part of the agent’s (or its teammate’s) state,
such as whether a robot is blocked by an opponent in robot
soccer. In addition, capability is represented by a mean
and variance, to signify the uncertainty in the actions and
world, as well as the reliability of the data collected from
observations. Since the values of capability are assumed to
be obtained through observation, the variance modelled in
the capability function provides a measure of how much data
has been collected from an agent, as well as how consistent
the agent’s performance is.

We defined a role assignment policy, as well as how to de-
termine the utility of such a policy, represented by a mean
and variance. We then described how to incorporate the
risk factor to retrieve the value of a policy. The risk factor
adjusts the mean-to-variance trade-off in the optimal role
assignment, and is an important contribution of our model.
We then discussed approximation algorithms such as hill-
climbing and hill-climbing with random restarts, after defin-
ing the concept of a neighbor in a role assignment policy. We
ran extensive experiments on the approximation algorithms,
and showed that hill-climbing (both the simple version and
with random restarts) found effective policies (as compared
to the optimal), performing better than market-based tech-
niques. Different values of risk affected the optimal policy
found, but did not affect the performance of the algorithms.

A possible application of MuSCRA is in a pick-up team
scenario, where a group of cooperative robots collectively
learn about their abilities in a team and discover an optimal
role assignment for the team. However, there are certain
drawbacks to our approach. Firstly, the calculation of a
policy’s utility can take extremely long in a worst-case sce-
nario. Also, it may take a long time for the team to have
sufficient observations to fill out the capability function be-
fore a good role assignment is obtained. An agent that is
aware of its own skills may not be able to readily transfer
this knowledge to the rest of the team, since the capabilities
are defined as a function of the teammates as well. Thus,
robots will need to experiment with their team to learn this
information. However, learning techniques can be applied
to our model, in order to generate the capability function
used in role assignment.

We are currently working on methods to generate the capa-



bility function from observational data, as well as methods
to determine what actions robots should take in order to ex-
plore the capability space more effectively. In addition, we
hope to be able to use MuSCRA in adversarial conditions
like robot soccer, so that robots can learn their capabili-
ties with regards to the opponents, and develop an effective
counter-strategy.
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